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Abstract

When there is no clear separation between micro- and macro-scales, ergodicity cannot be invoked to transform
ensemble into volume averages. In such cases it is necessary to use ensemble averaging directly. A straightforward cal-
culation of such averages converges slowly and therefore requires a large number of realizations of the system. This
paper describes a much more efficient method based on the use of a Fourier expansion of the quantity to be averaged.
The advantages of the Fourier approach are estimated in general terms and demonstrated explicitly with several exam-
ples for the specific problem of equal spheres in a viscous fluid. The analytical estimates suggest that similar results can
be expected for other situations as well. It is shown both analytically and numerically that the variance of the Fourier
coefficients is in many cases significantly smaller than that of the direct method, which leads to a much faster conver-
gence of the former. The paper also describes a method by which the probability distribution of a uniform ensemble can
be biased so as to mimic that of a non-uniform one with prescribed properties.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the derivation of macroscopic properties for system consisting of a large number of microscopic con-
stituents, the power of ensemble averaging lies in its applicability irrespective of the presence of separation
of scales. In this respect, ensemble averaging is quite distinct from time or space averaging, which can be
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meaningfully applied only when the time or spatial scales of the macroscopic behavior of the system are
much larger than those of its microscopic constituents. With this greater flexibility, however, comes a great-
er difficulty of implementation. For example, in a classic study of the stress system in a suspension of par-
ticles, Batchelor [1] remarks:
Ensemble averages can neither be calculated directly nor observed conveniently, and it is necessary to
consider the relation between ensemble averages and . . . calculable averages . . . To establish this rela-
tion we shall take for granted the usual ergodicity property of equality of the ensemble average of
some quantity and an integral average of the same quantity over any position co-ordinate with respect
to which the quantity is statistically stationary.
Thus, with the assumption of ergodicity, ensemble averages can be replaced by volume averages, the
numerical computation of which is straightforward provided an efficient method to calculate the micro-
scopic dynamics is available. This approach has been very fruitful and a large number of instances of its
application can be found in the literature.

There are cases, however, in which one would be interested in ensemble averages of spatially non-
uniform systems. Examples may be particles in a spatially non-uniform force field, molecular dynamics sim-
ulations of strong shocks, particles suspended in fluids, and others. A situation which has recently gained
particular prominence is that encountered in multi-scale computing (see e.g. [2–4]), where the matching of
the micro-and macro-regions requires the evaluation of averages of the quantities obtained from the micro-
simulation.

A standard way to deal with these situations is to assume a state of local homogeneity, which is subse-
quently treated as slowly varying in space. Evidently this approach is only justified when the macroscopic
scale L greatly exceeds the microscopic scales which, in addition to the particle scale a, include the charac-
teristic inter-particle distance d and possibly others. In order to avoid this limitation, it is desirable to develop
a computational method for the direct evaluation of ensemble averages for spatially non-uniform systems.

The difficulty in evaluating spatially non-uniform ensemble averages can be illustrated already with ref-
erence to the simplest average quantity, the particle number density. Consider a system consisting of N
indistinguishable particles labelled by the index a = 1,2, . . ., N. The mean number density n(x) of particles
centered at x is given by
nðxÞ ¼
XN
a¼1

dðx� yaÞ
* +

; ð1Þ
where the angle brackets indicate ensemble averaging over some probability distribution dependent on the
positions ya of the particle centers and on all the other degrees of freedom of the system; here and in the
following time is a parameter and will not be indicated for brevity. In principle, the direct calculation of
n(x) would require the following steps:

(1) A discretization of the system into volumes, or boxes, with centers at x1,x2, . . .;
(2) The generation of a large number of macroscopically equivalent realizations of the system;
(3) The calculation of the average number of particles in each box.

While conceptually straightforward, it is evident that the convergence of the procedure would be extremely
slow, which requires an ensemble with a very large number of realizations. This number will be the larger,
the finer the desired estimate of n. If interest lies in more complicated properties of the system, themselves
the result of complex micro-dynamics, the required amount of computation may well become prohibitive.

It is the purpose of this paper to present an alternative approach to the problem which not only consid-
erably increases the rate of convergence, but also permits to balance the computational effort with the



Q. Zhang et al. / Journal of Computational Physics 212 (2006) 247–267 249
required degree of accuracy. This objective would be next to impossible with the direct Monte Carlo ap-
proach just described. To illustrate our method, we apply it to the number density n(x) and to a system
of equal hard spheres interacting hydrodynamically in a viscous fluid in the low-Reynolds-number regime.
These are just examples: the method itself has a much broader applicability.
2. Description of the method

In many applications of ensemble averages, in order to simulate a system with a large spatial extent, one
has recourse to the artifice of using a computational cell with periodic boundary conditions. We limit our-
selves to this case, although the approach we describe can be extended to more general situations as will be
mentioned later in this section.

We consider a generic quantity qa pertaining to the ath particle, such as velocity, acceleration, and oth-
ers. The ensemble average �qðxÞ of this quantity for a system of N particles is given by
nðxÞ�qðxÞ ¼
XN
a¼1

qadðx� yaÞ
* +

. ð2Þ
In order to approximate this quantity by the direct method mentioned in the previous section, we would
discretize the domain of interest into small boxes DVj and, in each box, approximate the continuous func-
tion n�q by a constant nðxjÞ�qðxjÞ given by
nðxjÞ�qðxjÞ ¼
1

DV j

X
ya2DV j

qa
* +

. ð3Þ
In other words, for each realization, the sum of the qa for all the particles in the jth box is evaluated, and
then the average over all realizations is taken. This result is at the basis of the direct procedure for the eval-
uation of ensemble averages mentioned in the previous section. As shown later in this section, this relation
gives the best (in the least-squares sense) piecewise-constant approximation of the function n�q.

The alternative approach we advocate here is based on the calculation of the ensemble average by
expanding n�q in a Fourier series:
nðxÞ�qðxÞ ¼
X
k

ðnqÞk expð�ik � xÞ; ð4Þ
where the summation is extended over all the wave numbers of the reciprocal lattice. For example, if the
fundamental periodic cell is a cube of side L aligned with the coordinate axes, the allowed values of
k = (kx,ky,kz) are 2p(i, j,k)/L, where i, j and k are integers, and the summation extends over the entire range
�1 < i, j,k < 1. It is easy to show that, according to the rules for the calculation of the coefficients of a
Fourier series, since volume integration and ensemble averaging commute, we have
ðnqÞk ¼
1

V

XN
a¼1

expðik � yaÞqa
* +

; ð5Þ
where V is the volume of the fundamental cell of the periodic system. In particular, for k = 0
ðnqÞ0 ¼
1

V

XN
a¼1

qa
* +

; ð6Þ
which is the way in which ensemble averages are calculated for a statistically uniform system by exploiting
ergodicity. Eq. (5) extends the procedure to the non-uniform case. Once the Fourier coefficients are known,
the spatial dependence of the ensemble average is reconstructed from (4).
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One may expect – and the results to be shown later confirm it for most cases – that the second method
requires a smaller number of realizations for an acceptably converged average than the first one. In the first
place, it is well known that, for a given number of terms and sufficiently smooth functions, the Fourier
expansion gives a more faithful representation of the function of interest than a piece-wise constant approx-
imation and is, in this sense, more economical [5,6]. Secondly, at an intuitive level, by the very way they are
calculated, the Fourier series coefficients include information over the entire domain. This feature is useful
as the spatial distribution of interacting particles includes non-local effects. For example, the presence of a
particle at a point makes the presence of a particle at a neighboring point less likely – an effect that would
not be as easily captured by the discretized representation (7).

It is evident that the idea of the expansion (4) can be implemented by using different basis functions,
which may be more suitable for other situations. The coefficients of any expansion would be given by scalar
products, which will always involve volume integrals which commute with averaging. Thus, although the
details of the calculation would be different, one would expect to encounter features similar to those found
here in the case of Fourier coefficients.

In conclusion, we prove the results (3) and (5). For the former, we start by replacing n�q by a piecewise
constant function
nðxÞ�qðxÞ ’
X
j

nðxjÞ�qðxjÞvjðxÞ; ð7Þ
where vj(x) denotes the characteristic function of the jth box centered at xj. A least square minimization of
the resulting error shows that the constants nðxjÞ�qðxjÞ should be chosen as
nðxjÞ�qðxjÞ ¼
1

DV j

Z
V
d3xnðxÞ�qðxÞvjðxÞ ¼

1

DV j

Z
DV j

d3xnðxÞ�qðxÞ ð8Þ
from which, upon substitution of the definition (2) of n�q, (3) follows immediately. For (5), we exploit the
commutativity of volume integration and ensemble averaging to find
ðnqÞk ¼
1

V

Z
V
d3xeik�xnðxÞ�qðxÞ ¼ 1

V

Z
V
d3xeik�x

XN
a¼1

qadðx� yaÞ
* +

ð9Þ
from which (5) follows.
3. Variance

For practical computations, the convergence rate of the averages is of the utmost importance. This fea-
ture may be assessed by estimating the standard deviation of the quantity being averaged as, from the
Chebyshef inequality, the smaller this quantity the smaller the probability with which values far from
the mean occur [7]. For this reason, we now present an approximate calculation of the variance of the di-
rect-sum and of the Fourier coefficient methods described in Section 2. This theoretical analysis will be illus-
trated with numerical results in the sections that follow.

In the application of ensemble averaging to a specific physical process, one would normally deal with
realizations which are the result of that process and which, therefore, reflect its statistics. The probability
distribution P would then be a byproduct of the numerical simulation of many realizations of the micro-
physics of the process, each one of which would be started from a microscopically different, but macroscop-
ically equivalent, realization.

For the purposes of illustrating the ideas described before, however, it is unnecessary to go through this
step as it is sufficient to use a ‘‘model’’, or ‘‘synthetic’’, ensemble artificially generated according to some
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convenient rule. The simplest procedure is to make use of a spatially uniform ensemble, characterized by a
statistically uniform probability distribution P0(C

N), which is rendered non-uniform by assigning to each
realization CN a weight W(CN) writing
1 On
amoun
P ðCN Þ ¼ W ðCNÞP 0ðCN Þ. ð10Þ

It is shown in Appendix how to generate weights W(CN) capable of producing ensembles with a prescribed
non-uniform number density n(x). In order to illustrate our method and conclusions, we focus on the spe-
cific simple case in which the prescribed n is given by
nðxÞ ¼ n0 þ ns sin k � x. ð11Þ

According to (A.1) in Appendix A, the corresponding weights should be chosen as1
P ðCN Þ ¼ P 0ðCN Þ 1þ ns
n0

UðCN Þ
� �

with UðCN Þ ¼ 1

S0ðkÞ
XN
a¼1

sin k � ya ð12Þ
in which S0(k) is the structure factor of the uniform distribution defined in (A.3). Here and in the following,
the index 0 denotes quantities pertaining to the uniform probability distribution P0(C

N). Since S0 does not
vanish, for ns sufficiently small, the weights defined in (12) are positive and therefore generate a legitimate
probability distribution.

The ensemble average denoted by angle brackets in (2) can be written more explicitly as
XN
a¼1

qadðx� yaÞ
* +

¼ 1

N !

Z
dCNP ðCN Þ

XN
a¼1

qadðx� yaÞ; ð13Þ
where the N! normalization is due to the identity of the particles and P(CN) denotes the probability density
with which the specific realization CN of the system occurs in the ensemble. We use the word ‘‘realization’’
in a broad sense including all the independent degrees of freedom of each particle: position, velocity, ori-
entation, angular velocity etc. The integration is over all these degrees of freedom.

Since our interest here is in non-uniform ensembles, we will focus on the difference between the averages
for the non-uniform and uniform distributions for the generic quantity q, scaled by n0/ns for convenience:
DqðxÞ ¼ n0
ns

XN
a¼1

qadðx� yaÞ
* +

�
XN
a¼1

qadðx� yaÞ
* +

0

 !
. ð14Þ
Here Æ� � �æ is the average (13) taken with the non-uniform probability P and Æ. . .æ0 the corresponding average
calculated from (13) with P replaced by the uniform probability P0. In view of definition (13), we have
DqðxÞ ¼ UðCN Þ
XN
a¼1

qadðx� yaÞ
* +

0

; ð15Þ
in which U, defined in (12), is a measure of the non-uniformity of the probability distribution. For the Fou-
rier method, by (4) and (5), Dq(x) equals
DqðxÞ ¼ Dq
s ðkÞ sinðk � xÞ þ Dq

cðkÞ cosðk � xÞ ð16Þ

with
e may view this probability distribution as the result of displacing each particle in each realization of the uniform ensemble by an
t proportional to sin k � ya from its initial position ya.
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Dq
s ðkÞ �

2

V
UðCNÞ

XN
a¼1

qa sin k � ya
* +

0

; ð17Þ

Dq
cðkÞ �

2

V
UðCNÞ

XN
a¼1

qa cos k � ya
* +

0

. ð18Þ
For the direct-sum method, according to (3), we wish to estimate the variance of
Dq
j �

1

DV j

X
ya2DV j

qa
* +

� 1

DV j

X
ya2DV j

qa
* +

0

¼ U
1

DV j

X
ya2DV j

qa
 !* +

0

. ð19Þ
It is shown in Appendix B that the result is, approximately
var½Dq
j � ’

n20hq2i1
2S0ðkÞ

½N þ Nb þ NCq
j � þ ðDq

j Þ
2. ð20Þ
Here N is the number of particles, Nb the number of boxes in which the domain of interest has been dis-
cretized for the calculation of the ensemble average according to the direct method, and Æq2æ1 is the value of
q2 for a particle averaged over the position of all the other particles; a precise definition is given in (B.13).
Furthermore, Cq

j is given by
Cq
j ¼

1

DV 2
j

Z
DV j

d3y
Z
DV j

d3zg0ðz� yÞ hq
yqzi2ðz� yÞ � hq2i1

hq2i1
; ð21Þ
in which Æqyqzæ2(y,z) is the average over the other particles of the product of the qs for two particles, one
centered at y and the other at z. In (21) g0(r) is the pair distribution function of the uniform ensemble, pro-
portional to the probability of having two particles separated by r. If the values of q for two particles are
completely uncorrelated, Æqyqzæ2 = Æq2æ1 and Cq

j ¼ 0. This quantity therefore is sensitive to particle
correlations.

The corresponding results for the variances of Dq
s ðkÞ and Dq

cðkÞ according to the Fourier method are
shown in Appendix B to be given by
var½Dq
s � ¼

n20hq2i1
S0ðkÞ

½S0ðkÞ þ NCq
k� þ ½Dq

s ðkÞ�
2
; ð22Þ

var½Dq
c � ¼

n20hq2i1
S0ðkÞ

½S0ðkÞ þ NCq
k� þ ½Dq

cðkÞ�
2 ð23Þ
in which
Cq
k ¼

1

V

Z
d3r cos k � rg0ðrÞ

hqyqzi2ðrÞ � hq2i1
hq2i1

. ð24Þ
Again, this quantity is sensitive to particle correlations and will become smaller with increasing jkj, at least
from some point on.

It is evident from (8) that Dq
j is the average over the jth box of the quantity Dq(x) defined in (16) and,

therefore, Dq
j is at most of the order of Dq

s or Dq
c . The real difference between the two estimates (20) of

the variance of the direct method and (22), (23) of the Fourier variance lies therefore in the first terms
in the right-hand sides. If the distance over which the property q of two particles is strongly correlated
is small, Cq

j ’ 0; Cq
k ’ 0 and the quantities of interest are then
N b þ N
2S0ðkÞ

n20hq2i1 and n20hq2i1. ð25Þ
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In typical applications, N + Nb is a large number. Furthermore, S0(k) is less than 1 when the modulus of jkj
is less than about 2p/d, where d is a measure of the mean interparticle distance. It may therefore be con-
cluded that, in this case, the Fourier-method variance is much less than that of the direct method. When
the C terms dominate, the comparison is between
Fig. 1
calcula
k = 2p
n20hq2i1
NCq

j

2S0ðkÞ
and n20hq2i1

NCq
k

S0ðkÞ
. ð26Þ
For small jkj, Cq
j and Cq

k may be expected to be of the same order of magnitude, from which we conclude
that the two variances are comparable in this case. However, Cq

k depends on k, while Cq
j does not, and [8,9]
1

V

Z
d3r cos k � rg0ðrÞ ¼

1

N
½S0ðkÞ � 1�. ð27Þ
As jkj increases, S0 ! 1, which suggests that, once again, the direct-method variance would be larger than
the Fourier-method one.
4. Construction of the ensembles and calculation of the averages

We illustrate the results of the previous analysis by considering equal spherical rigid particles with radius a
immersed in a viscous fluid.We construct uniform ensembles ofN particles in a fundamental cubic cell of side
L by the following procedure. We start by randomly arranging the particles in the cell making sure that no
overlap occurs, and subject them to a randomwalk taking care to avoid overlaps at each step.After 100N steps
per particle, we store the resultant realization as amember of the ensemble. A different initial randomarrange-
ment is generated for every realization. To avoid biases, particles are displaced in random order rather than in
a fixed sequence. By repeating this procedure, we construct ensembles of Nr realizations.

In order to test the randomness of these ensembles, we calculate the structure factor S0(k) defined in (A.3)
considering wave numbers k ” (kx,ky,kz) of the form 2p(i, j,k)/L, where i, j, k are integers and the coordinate
directions are taken parallel to the sides of the fundamental cell, each one ofwhich has lengthL. As an example
of one of these calculations, inFig. 1we compare our results (circles)with thePercus–Yevick approximation to
the hard-sphere structure factor in infinite space [10–12] for a sphere volume fraction of 15% (line). These re-
sults were obtained with a variable number realizations ranging from 256 for 160 particles to 1.048 for 16
 0.2
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. Comparison between the structure factor given by the Percus–Yevick solution SPY(k) (solid line) and S(k) numerically
ted from (A.3) from the realizations used in the present work for a volume fraction b = 0.15. The solid circles are calculated with
/L and the open circles are with higher spatial modes.
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particles. [13] Since the structure factor in this case is isotropic, S0(k) is plotted as a function of k = jkj and the
point plotted is the average over the three different directions of the wave vector. This result shows that,
although our ensembles are not strictly isotropic, they give rise to a structure factor essentially indistinguish-
able from the Percus–Yevick distribution in infinite space in the wave vectors range greater than 2p/L. This
result is reproduced from [13], where it is also shown that the relative difference between our structure factor
and the Percus–Yevick solution is independent of the volume fraction and around 6–8%.

Due to the functional form of the weights (A.1), we now consider in detail the special case
nðxÞ ¼ n0 þ ns sin km � x; ð28Þ
where km is a vector parallel to one of the sides of the fundamental cell with magnitude
km ¼ jkmj ¼
2p
L
m; ð29Þ
where m is a positive integer. The corresponding probability distribution is
P ðCNÞ ¼ P 0ðCNÞ 1þ ns
n0

Um

� �
; ð30Þ
with
UmðCN Þ ¼ 1

S0ðkmÞ
XN
a¼1

sinðkm � yaÞ. ð31Þ
Then, with (13), (5) becomes
ðnqÞk ¼
1

N !

Z
dCNP 0 1þ ns

n0
Um

� �
1

V

XN
a¼1

expðikm � yaÞqa

¼ ns
n0

1

N !

Z
dCNP 0Um

1

V

XN
a¼1

expðikm � yaÞqa; ð32Þ
where the omitted term is readily seen to vanish in the limit of an infinite ensemble. In the numerical cal-
culation, the factor N! can be ignored, as it merely amounts to a renumbering of the particles, and the inte-
gral over the degrees of freedom of the system is approximated by the average over the Nr realizations of the
ensemble. In this way we have
n0
ns

ðnqÞkm ’ 1

Nr

XNr

‘¼1

1

V
½Um�‘

XN
a¼1

expðikm � yaÞqa
" #

‘

; ð33Þ
where [. . .]‘ denotes the value of the bracketed quantity calculated for the ‘th realization.
In a similar way we write (3) as
nðxjÞ�qðxjÞ ¼ ðn�qÞ0j þ ðn�qÞmj ; ð34Þ
where
ðn�qÞ0j ¼
1

DV j

1

Nr

XNr

‘¼1

X
ya2DV j

qa
" #

‘

; ð35Þ

n0
ns

ðn�qÞmj ¼ 1

DV j

1

Nr

XNr

‘¼1

Um

X
ya2DV j

qa
" #

‘

. ð36Þ



Q. Zhang et al. / Journal of Computational Physics 212 (2006) 247–267 255
Since here we are interested in the effects of non-uniformity, we will focus on the quantity defined by (36).
The uniform part ðn�qÞ0j is obviously independent of j and equal to the uniform part of the Fourier method,
(nq)0 defined in (6).
5. Application to the number density

To illustrate the analysis of Section 3, we start by considering the simple case of the number density for
which qa = 1 and Cq

j ¼ 0. In this case the result (20) for the direct-method variance simply becomes
var½Dn
j � ’

n20hq2i1
2S0ðkmÞ

ðNb þ NÞ þ ðDn
j Þ

2. ð37Þ
But, from (14) and (3)
Dn
j ¼

n0
DV j

Z
DV j

d3x sin km � x ¼ n0 sin km � nj; ð38Þ
where use has been made of the mean value theorem, so that
var½Dn
j � ’

N þ N b

2S0ðkmÞ
þ sin2km � nj

� �
n20 ’

N þ N b

2S0ðkmÞ
n20. ð39Þ
For the Fourier method on the other hand, from (B.8), Dn
s ¼ n0 while Dn

c ¼ 0, so that
var½Dn
s � ’ 2n20; var½Dn

c � ’ n20. ð40Þ

The structure factor is essentially of order 1 or smaller while N + Nb is typically large. It is therefore evident
that the right-hand side of (40) is smaller than that of (39).

These expectations are supported by the numerical evidence. Fig. 2 show the variance (normalized by
multiplication by a6), calculated according to the direct method for volume fractions of 15% and 45% with
N = 150 particles. Here the fundamental cell has been divided into Nb = 16 boxes by planes perpendicular
to the direction of km. The points, showing the numerically calculated variances for km = 2mp/L with
m = 1, 2, 4, 6, 8 are placed at the center of the corresponding box. A total of 1536 realizations were used
to generate these results. In agreement with (39), the variance is nearly constant, only exhibiting a slight
sinusoidal variation corresponding to the term 2S0ðkmÞsin2km � nj in the equation. The Fourier-method vari-
ances are essentially independent of the wave number (or, equivalently, of m) and to be very closely pre-
dicted by (40) which gives values of 2.565 · 10�3a6 and 2.850 · 10�2a6 for volume fractions of 15% and
45%, respectively; these values are too small to be shown on the scale of these figures.

The direct-method variance averaged over all the boxes and the Fourier variance are shown as functions
of k on a logarithmic scale in Fig. 3. Here the lines are the theoretical predictions (39) and (40) and the
symbols the computed numerical results. These results fully support the previous analysis.

To illustrate the effect of the larger variance on the convergence rate of the averaging process, we show in
Fig. 4 graphs of
a3j½Dn
s ðk1Þ�Nr

� ½ðDn
s ðk1Þ�exactj; and a3j½Dn

j �Nr
� ½Dn

j �exactj; ð41Þ
the latter for j = 4 and 8. Here Dq
s ðk1Þ is the scaled Fourier amplitude of the particle number density fluc-

tuation Dn
s defined in (17) evaluated for k1 = 2p/L and Dn

j is the corresponding quantity for the direct
method defined in (19). The subscript exact denotes the exact value and the subscript Nr denotes the
running average over Nr realizations of the ensemble, which is the variable plotted on the horizontal axis.
Here the fundamental cell has been divided into 16 boxes in the same way as previously described for Fig. 2.
Box 4 contains a maximum of n(x), while box 8 is close to the point where n(x) = n0. In this case the



Fig. 2. Direct-method variance (normalized by multiplication by a6, with a the particle radius) for the number density. The volume
fractions are 15% (left) and 45%; the volume is divided into 16 boxes with N = 150 particles and 1536 realizations. The points, showing
the numerically calculated variances for k = 2mp/L with m = 1,2,4,6,8, are placed at the center of the corresponding box: m = 1 (d),
m = 2 (·), m = 4 (+), m = 6 (m), m = 8 (j). The normalized Fourier variances calculated from (40) are 2.565 · 10�3 and 2.850 · 10�2

for 15% and 45%, respectively. They are too small to show clearly in these figures.

Fig. 3. Variances for the Fourier and the direct method normalized by multiplication by a6 as functions of ka with the parameters of
the previous figure for volume fractions of 15% (left) and 45%; a is the particle radius. The direct-method variance is averaged over all
the boxes. The lines are the theoretical predictions (39) and (40) and the symbols the computed results.
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fundamental cell contains 150 particles, the volume fraction is 15% and 1536 realizations were used. The
straight line with long dashes has a slope of �1/2. The figure shows that the error decreases according
to N�1=2

r for both methods but, for the same number of realizations, the error affecting the direct method
is consistently at least one order of magnitude greater than that affecting the Fourier method.



Fig. 4. Running average of the normalized error (41) affecting the density fluctuation Dn
s defined in (17) and of the similar quantity for

the direct method, Dn
j defined in (19). The broken lines are for j = 4 and 8 for a subdivision of the interval into 16 boxes with k1 = 2p/L.

The long-dashed line has a slope of �1/2.
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As a final example we consider a situation in which the number density has a polynomial non-uniformity
in the x-direction
nðxÞ � n0
An0

¼ x
L

� �2
1� x

L

� �2 x
L
� 1

4

� �
x
L
� 9

14

� �
. ð42Þ
where A is an arbitrary amplitude. The x-dependent part has mean zero, so that the volume average of n is
n0 as in the previous cases. A Fourier approximation to n(x) as defined by this function including the first
four sines and five cosines has a maximum error of 2.5% relative to the maximum. The solid line in Fig. 5
shows [n(x) � n0]/(An0) as given by (42), the dotted line is the value reconstructed from the ensemble aver-
age of the first four cosine and five sine coefficients, while the broken line is the result of direct ensemble
averaging (as in (3) with qa = 1), all calculated with 1536 realizations.
6. Application to Stokes flow

The number density considered in the previous section only embodies the simple inter-particle interac-
tion due to impenetrability. It is interesting to consider also a more complex interaction dependent on an
actual physical process. For this purpose, we turn to the case of equal spherical particles suspended in a
slow fluid flow for which inertia effects are unimportant, the so-called Stokes regime. It may be recalled
that, in Stokes flow, for a given driving agent, velocities and angular velocities are uniquely determined
by the particle position. Thus, in order to examine the velocity statistics, it is sufficient to focus on an
ensemble of particle configurations at a given instant; the subsequent time evolution of the system is imma-
terial. For the numerical simulations we used the multipole method of [14]; details can be found in [13].

We consider first the process of sedimentation, in which an equal force, parallel to the sides of the fun-
damental cell, is applied to each particle. For translating particles, the decay rate of the fluid velocity dis-
turbance is very slow (for a single particle, inversely proportional to the distance), so that even fairly distant



Fig. 5. Comparison of the exact number density non-uniformity (42) (solid line), the Fourier ensemble average (dotted line) and the
direct ensemble average (broken line with dots) for volume fractions of 15% (left) and 45% calculated with 1536 realizations of 150
particles.
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particles strongly influence each other (see e.g. [15–17]). Consideration of this situation represents therefore
a case of rather extreme long-range particle–particle interaction, and lends itself well to an illustration of
the effect of the terms C in (20), (22) and (23).

We calculate the velocity w in the direction of the applied force in a reference frame in which the center
of mass of the particle-fluid mixture is at rest as would happen, for example, in a stationary container. For
the direct method the boxes are generated by planes parallel to the cell faces and to the direction of gravity.
To generate the results that follow we used a procedure which is equivalent to using 3072 pieces of data.2

Before considering the variances, it is instructive to look at the behavior of Cw
j defined in (21) and Cw

k

defined in (24). The horizontal lines in the left panel of Fig. 6 show Cw
j for volume fractions of 15% (upper

line) and 45%. As noted before, this quantity is actually independent of j. As the particle separation in-
creases, Æwywzæ ! (Æwæ)2, so that Æwy wzæ�Æw2æ ! �var[w] < 0. This circumstance justifies the fact that the
result is negative. The upper lines in the same figure show Cw

k . For k = k1 the result is positive, because
the negative contribution of Æwywzæ � Æw2æ is balanced by the negative sign of the cosine.3 For larger values
of km, however, the oscillating nature of the cosine quickly makes Cw

k very small.
Figs. 7 and 8 show on a log scale the variance for the vertical sedimentation velocity for volume fractions

of 15% and 45%, respectively. The quantity plotted is normalized by multiplication by (a3/w0)
2, where w0 is

the settling velocity of a single particle in an unbounded fluid; explicitly, w0 = (2/9)(a2g/m)(qp � qF)/qF, with
g the acceleration of gravity, m the fluid kinematic viscosity and qp, qF the particle and fluid densities,
respectively,

In each figure, the left panel is for k1 = 2p/L and the right one for k4 = 4 · 2p/L. The open symbols are
the theoretical estimate (20) and the closed ones and the line are the numerical results. In the first case,
2 We generated 512 distinct particle arrangements. For each one of these, we calculated the settling velocity of each particle with the
applied force directed, in turn, along the three sides of the fundamental cell, which effectively results in 3 · 516 = 1536 realizations. For
each one of these, we took km in the two directions perpendicular to the applied force. Each point shown is therefore the average of
2 · 1,536 = 3,072 pieces of data.
3 Note that, due to the cutoff imposed by g0 when r 6 2a, the average of the cosine over the integration domain is negative.



Fig. 6. The quantities Cj (lower horizontal lines) and Ck defined in (21) and (24) for volume fractions of 15% and 45%. The left figure is
for the sedimentation velocity and the right one for the applied couple.

Fig. 7. Direct- (symbols) and Fourier-method (dashed line) variance of the normalized vertical velocity for sedimenting particles in the
Stokes flow regime for k1 = 2p/L (left) and k4 = 4 · 2p/L. The open symbols are the theoretical estimate (20) and the closed ones and
the line are the numerical results. The volume fraction is 15% and the number of boxes 16, with 150 particles and 3072 realizations.
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1
2
ð1þ Cw

j Þ is numerically not too different from Cw
k and these terms dominate in the respective expressions

for the variances. Hence, the two variances are relatively close. However, for larger k, Cw
k is very close to

zero and the variance for the Fourier method accordingly much smaller than that for the direct method.
We turn now to the case of particles rotating under the action of an equal couple T applied to each one.

The Stokes velocity field induced by an isolated rotating particle decays proportionally to the inverse square
of the distance (see e.g. [15,17]) and, therefore, this case is intermediate between the number density and the
sedimentation velocity from the point of view of the range of the particle–particle interaction. As before, we



Fig. 8. Direct- (symbols) and Fourier-method (dashed line) variance of the normalized vertical velocity for sedimenting particles in the
Stokes flow regime for k = 2p/L (left) and k = 4 · 2p/L. The open symbols are the theoretical estimate (20) and the closed ones and the
line are the numerical results. The volume fraction is 45% and the number of boxes 16, with 150 particles and 3072 realizations.
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use 512 distinct particle arrangements, for each one of which we calculate the angular velocity of each par-
ticle, with the couple T directed, in turn, along the three sides of the fundamental cell. This procedure again
results in 3 · 516 = 1536 different realizations. Again as before, for each one of these, we take km in the two
directions perpendicular to the applied torque. The results for the angular velocity variance are shown in
Figs. 9 and 10 normalized by (a3/x0)

2, where x0 = T/(8pla3), with l the fluid dynamic viscosity, is the
angular velocity of an isolated particle subject to the couple T.
Fig. 9. Direct- (symbols) and Fourier-method (dashed line) variance of the normalized angular velocity for particles subject to a couple
in the Stokes flow regime for k = 2p/L (left) and k = 4 · 2p/L. The open symbols are the theoretical estimate (20) and the closed ones
and the line are the numerical results. The volume fraction is 15% and the number of boxes 16, with 150 particles and 3072 realizations.



Fig. 10. Direct- (symbols) and Fourier-method (dashed line) variance of the normalized angular velocity for particles subject to a
couple in the Stokes flow regime for k = 2p/L (left) and k = 4 · 2p/L. The open symbols are the theoretical estimate (20) and the closed
ones and the line are the numerical results. The volume fraction is 45% and the number of boxes 16, with 3072 realizations of 150
particles.
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The right panel in Fig. 6 shows Cx
k and Cx

j for this case, also for volume fractions of 15% and 45%. The
former is very close to zero for all kms, while the latter is negative as before, although about one order of
magnitude smaller than for sedimentation. Such very small values of the C�s make this case very similar to
the number density studied in the previous section. The direct-method variance is very nearly constant and
the approximate estimate of Section 3 (open circles) reproduces very well the numerical results (black cir-
cles). The variance for the Fourier method is about two orders of magnitude smaller. For a volume fraction
Fig. 11. Comparison of the normalized vertical (left) and angular velocity for the number density (42) as calculated by the Fourier
method (line) and directly (points) for a volume fraction of 45% with 3072 realizations of 150 particles.
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of 45% (Fig. 10) the situation is very similar with an even larger difference between the two variances. Un-
like the vertical velocity case, the difference between the variances calculated in the two ways is smaller for
the larger wave number case (right panels in Figs. 9 and 10). This result is a consequence of the fact that, for
the velocity, Cw

k is positive for small k = 2p/L and nearly zero for larger k, which decreases the variance with
increasing k. For the angular velocity, instead, the Cx

k is small for all k, although its effect is magnified by
the multiplication by the particle number (see Eqs. (22) and (23)); the variance of the direct method, how-
ever, decreases as S0 in Eq. (20) increases as k is increased from 2p/L to 4 · 2p/L. In any case, however, it is
obvious that the converging trend of the two variances with increasing k does not continue as, for large k,
S0 . 1 and Cx

k ! 0. Thus, the direct-method variance will always be larger than that for the Fourier
method.

For the case of the polynomial number density (42), one would expect the Fourier method to per-
form similarly to the direct one for the velocity, but to be superior for the angular velocity for which
the correlation between neighboring particles is relatively weak. This expectation is borne out by the
numerical results shown in Fig. 11 calculated with 3072 realizations for a volume fraction of 45%;
the results for 15% are very similar. The quantities shown in these figures are normalized by w0/a

3

and x0/a
3 as before.
7. Conclusions

The frequently applied reduction of ensemble averages to volume averages rests on an assumption of
ergodicity which fails in the absence of a strong separation between micro-and macro-scales. This situation
is encountered e.g. in the case of spatially non-uniform suspensions. In cases such as these, ensemble aver-
ages must be dealt with as such and no simplification is possible.

In practice, the problem with the direct calculation of ensemble averages according to their definition lies
in the relatively slow convergence – inversely proportional to the square root of the number of realizations –
which therefore requires the use of large ensembles. In this paper, we have presented a more efficient meth-
od based on the use of a Fourier expansion of the averages. We have presented an approximate analytical
calculation which shows that the variance of the Fourier averages is much smaller than that of the direct
averages when the particle–particle interaction decays rapidly. This smaller variance results in a much faster
convergence of the averages. The analytical estimates have been substantiated numerically with examples
taken from the theory of Stokes flow. We find that, for a quantity like the sedimentation velocity (which,
in the case of an isolated sphere, produces a disturbance decaying inversely with the distance), the variance
for the Fourier method is only about a factor of 2 smaller than that of the direct method (Figs. 7 and 8). In
this case, there is little difference between the Fourier and direct methods (Fig. 11, left panel). However, for
a quantity such as the rotational velocity, which produces a more rapidly decaying disturbance in the fluid
(proportional to the square of the inverse distance for an isolated sphere), the two variances differ by about
two orders of magnitude (Figs. 9 and 10) and the Fourier methods outperforms the direct approach (see e.g.
Fig. 11, right panel). Even in the former case, however, when the length scale of the spatial non-uniformity
is reduced, the Fourier variance rapidly falls orders of magnitude below that of the direct method.

We have also demonstrated a method by which the probability distribution of a uniform ensemble can
be biased so as to mimic that of a non-uniform one. This technique permits the study of the effect of non-
homogeneity under controlled conditions.
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Appendix A. The non-uniform ensemble

It was mentioned in the text that it is possible to choose the weights in (10) in such a way that the number
density n(x) defined in (1) has a prescribed form. It is readily verified that this objective is realized by the
rule
4 It m
realiza

5 No
W ðCNÞ ¼ 1þ 1

n0

X
k6¼0

~nðkÞ
S0ðkÞ

XN
a¼1

expð�ik � yaÞ; ðA:1Þ
where
n0 ¼
N
V

ðA:2Þ
is the average number density of the particles in the fundamental cell, ~nðkÞ the Fourier coefficient of the
prescribed number density n(x),4 and S0(k) is the structure factor of the uniform distribution defined by
[8,9]
S0ðkÞ ¼
1

N

XN
a;b¼1

exp ik � ðya � ybÞ
* +

0

¼ 1

N

XN
a;b¼1

cos k � ðya � ybÞ
* +

0

; ðA:3Þ
where, as before, the index 0 appended to the averaging symbol denotes that the average is carried out
according to the uniform probability distribution P0(C

N). The proof of (A.1) for k = 0 is trivial. For
k 6¼ 0, it is sufficient to note that, from (5),
~nðkÞ ¼ 1

N !

Z
dCNPðCN Þ 1

V

XN
b¼1

expðik � ybÞ
" #

. ðA:4Þ
Upon substituting here (10) and (A.1), we find5
~nðkÞ ¼ 1

N !

Z
dCNP 0ðCN Þ 1þ 1

n0

X
k0

~nðk0Þ
S0ðk0Þ

XN
a¼1

expð�ik0 � yaÞ
" #

1

V

XN
b¼1

expðik � ybÞ
" #

¼ 1

N

X
k0

~nðk0Þ
S0ðk0Þ

XN
a;b¼1

exp½iðk � yb � k0 � yaÞ�
* +

0

. ðA:5Þ
But it is easy to show that
XN
a;b¼1

exp½iðk � yb � k0 � yaÞ�
* +

0

¼ Ndk;k0S0ðk0Þ ðA:6Þ
with which (A.5) reduces to the identity ~nðkÞ ¼ ~nðkÞ. Indeed, upon setting in (A.5) ya ¼ ~ya þ Y, where Y is
an arbitrary vector equal for all the particles, we find
ay be noted that the summation over a is proportional to the Fourier coefficient of the microscopic number density m(x) of the
tion Ci defined by

miðxÞ ¼
XN
a¼1

dðx� yai Þ.

te that, for k 6¼ 0, the 1 in the square brackets contributes nothing.
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XN
a;b¼1

exp½iðk � yb � k0 � yaÞ�
* +

0

¼ exp½iðk� k0Þ � Y�
XN
a;b¼1

exp½iðk � ~yb � k0 � ~yaÞ�
* +

0

. ðA:7Þ
But, since the ensemble is uniform and periodic, for each realization, it must contain all the realizations
obtained by a rigid translation of the particles. Thus the averages on the two sides of (A.7) must be identical
which, by the definition (A.3) and the arbitrariness of Y, implies (A.6).6

It may be noted that the choice (A.1) for the weights does not insure a positive probability for any set of
Fourier coefficients ~nðkÞ. However for sufficiently small ~n�s,W will be positive and, therefore, (10) will be an
acceptable probability distribution. As an example, Eq. (12) clearly shows that P > 0 provided ns/n0 < S0/N.
Although in this study we use (10) only to bias the probability distribution so as to reproduce a spatially
non-uniform particle number density, a similar device can be developed to bias the statistical distribution of
other independent variables such as the particle velocity.

When P0 only depends on particle positions–which is the case we consider explicitly in this paper – since
all the realizations that are translates of the same realization must have the same probability, it follows that
P0(C

N) can only depend upon the differences y2 � y1, y3 � y1, etc., rather than separately on y1,y2, . . .. If P0

depends on other arguments, the same conclusion holds after integrating over them.
Appendix B. Estimate of the variances

Here we prove the estimate (20) for the variance of the direct method and the estimates (22) and (23) for
the variances of the Fourier coefficients.

B.1. Direct method

For the direct-sum method we wish to estimate the variance of (19). Let us define
Qj ¼
1

DV j

X
ya2DV j

qa. ðB:1Þ
From (19), the variance of interest, var½Dq
j �, can then be written as
var½Dq
j � ¼ hU2Q2

j i0 � ðhUQji0Þ
2. ðB:2Þ
To estimate this quantity we observe that both U and Qj are given by sums of random variables. If these
variables were independent, according to the central limit theorem, the probability distribution of these
sums would tend to the normal form as the number of terms – equal to the number of particles – tends
to infinity. In our case, the random variables in the sums are not independent but one may disregard this
fact as a first approximation, the accuracy of which will be checked numerically a posteriori. The first term
in (B.2) can then be approximated by assuming a multivariate normal distribution of U and Qj. According
to a well-known result (see e.g. [18, p. 37]), if two random variables X1,X2 are jointly normally distributed,
the expectation value of hX 2

1X
2
2i is given by
hX 2
1X

2
2i ¼

o2

o
2a

o2

o
2b

/ða; bÞ
� �

a;b¼0

; ðB:3Þ
as a consequence of the translation, a particle were to end up outside the fundamental cell, it would be replaced by its periodic
in the cell. But also this case one would have exp [i(k � k 0) Æ ya)] ! exp [i(k � k 0) Æ Y)] exp [i(k � k 0) Æ ya)] and, since all realization
with equal probability, the same conclusion holds.
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where / is the characteristic function given by
/ða; bÞ ¼ exp i½hX 1iaþ hX 2ib� �
1

2
r11a2 þ r22b

2 þ 2r12ab
� �� �

; ðB:4Þ
where rjj is the variance of Xj and r12 the covariance of X1X2. In the present application, ÆUæ0 = 0 and the
previous formula gives then
hU2Q2
j i0 ¼ 2 hUðQj � hQji0Þi0

	 
2 þ rUU rQjQj
þ hQji0
� �2h i

¼ 2 hUQji0
� �2 þ hU2i0hQ2

j i0 ðB:5Þ
so that
var½Dq
j � ¼ hU2i0hQ2

j i0 þ hUQji0
� �2 ðB:6Þ
or
var½Dq
j � ¼ hU2i0

1

DV j

X
ya2DV j

qa
 !2* +

0

þ ðDq
j Þ

2. ðB:7Þ
The first term in the right-hand side of this expression may be estimated by noting that
hU2i0 ¼
1

S2
0ðkÞ

XN
a;b¼1

sin k � ya sin k � yb
* +

0

¼ 1

2

N
S0ðkÞ

. ðB:8Þ
For the other factor in the first term of (B.7), let
daj ¼
1 if particle a 2 box j;

0 if particle a 62 box j.

�
ðB:9Þ
Then we may write
X
ya2DV j

qa
 !2* +

0

¼
XN
a¼1

daj q
a

 !2* +
0

. ðB:10Þ
But, according to the definition (13) of average
XN
a¼1

qadaj

 !2* +
0

¼ 1

N !

Z
dCNP 0ðCN Þ

XN
a¼1

XN
b¼1

dajd
b
j q

aqb

¼ 1

N !

Z
dCNP 0ðCN Þ NðqyÞ2dyj þ NðN � 1Þqyqzdyjd

z
j

h i
; ðB:11Þ
where we call y the position of particle 1, z the position of particle 2 and have used the identity of the par-
ticles and the fact that (dj)

2 = dj. Therefore, we find
XN
a¼1

daj q
a

 !2* +
0

¼
Z

d3yP 0ðyÞd1j hq2i1ðyÞ þ
Z

d3y
Z

d3zP 0ðy; zÞdyjd
z
jhqyqzi2ðy; zÞ; ðB:12Þ
where Æq2æ1(y) is the conditional average of q2 with one particle fixed, i.e.
hq2i1ðyÞ ¼
1

ðN � 1Þ!

Z
dCN�1P 0ðCN�1jyÞðqyÞ2 ðB:13Þ
in which P0(C
N�1jy) is the one-particle conditional probability density, i.e. the probability density for

the configuration of the remaining N � 1 particles given that one particle is centered at y; Æqyqzæ2 is the
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conditional average with 2 particles fixed defined similarly. From the translational invariance of the ensem-
ble noted at the end of Appendix A, we deduce that Æq2æ1(y) is actually independent of y while
Æqyqzæ2(y,z) = Æqyqzæ2(z � y) and P 0ðy; zÞ ¼ n20g0ðz� yÞ, where g0 is the pair distribution function of the uni-
form ensemble. For simplicity, from now on we assume that the boxes are all equal, Nb in number, so that
DVj = V/Nb. The d symbols have the effect of limiting the integrations over box j and, therefore
1

DV j

X
ya2DV j

qa
 !2* +

0

¼ Nbn20
N

hq2i1 þ
n20
DV 2

j

Z
DV j

d3y
Z
DV j

d3zg0ðz� yÞhqyqzi2ðz� yÞ. ðB:14Þ
Since g0(z � y) and Æqyqzæ2 are both bounded and independent of DVj, we have
1

DV 2
j

Z
V j

d3y
Z
V j

d3zg0ðz� yÞhqyqzi2ðy; zÞ
�����

����� 6 max
DV j

½g0ðz� yÞ�max
DV j

jhqyqzi2ðz� yÞj½ �

6 max
V

½g0ðz� yÞ�max
V

jhqyqzi2ðz� yÞj½ �. ðB:15Þ
The second term in (B.14), therefore, is bounded as the number of boxes Nb increases and we therefore con-
clude that, at least for Nb sufficiently large, the quantity in the left-hand side of (B.14) is a linear function of
Nb.

In order to make further progress, it is convenient to introduce the quantity Cq
j defined in (21) with which
1

DV j

X
ya2DV j

qa
 !2* +

0

¼ n20hq2i1
N b

N
þ Cq
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1

DV 2
j

Z
DV j

d3y
Z
DV j

d3zg0ðz� yÞ
 !

. ðB:16Þ
To estimate the integral, we consider the case qa = 1, for which Cq
j ¼ 0 and the left-hand side is simply Æ(Nj/

DVj)
2æ. In this case this equation becomes
Nj
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¼ n20
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N
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DV 2
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but also, by definition,
Nj

DV j
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þ var½Nj�
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DV 2
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. ðB:18Þ
For non-interacting particles, we have the well-known estimate [19]
var½Nj� ’
N
N b

1� 1

N b

� �
ðB:19Þ
with which, upon comparing (B.17) and (B.18),
1

DV 2
j

Z
DV j

d3y
Z
DV j

d3zg0ðz� yÞ ’ N � 1

N
’ 1. ðB:20Þ
Note that, for equal boxes, Cq
j is actually independent of j but we have retained the index nevertheless to

remind the reader that this quantity refers to the box-counting method. With these approximations and
(B.8), (B.7) becomes the result (20) given in the text.

B.2. Fourier method

The same procedure leading to (B.6) can be applied to the calculation of the variance according to the
Fourier method with the result
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var½Dq
s ðkÞ� ¼ hU2i0

2

V

XN
a¼1

qa sin k � ya
 !2* +

0

þ ½Dq
s ðkÞ�

2. ðB:21Þ
The first term in this expression can be further developed in the same way as before to find
2

V

XN
a¼1

qa sin k � ya
 !2* +

0

¼ 2n20
N

hq2i1 þ
4n20
V 2

Z
d3y
Z

d3z sin k � y sin k � zg0ðz� yÞhqyqzi2ðz� yÞ

¼ 2n20
N

hq2i1 þ
2n20
V

Z
d3r cos k � rg0ðrÞhqyqzi2ðrÞ

¼ 2n20
N

hq2i1 S0ðkÞ þ NCq
k½ �; ðB:22Þ
where Cq
k is defined in (24). With these results, (22) and (23) follow.
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